correction_factor_lpf.theor_cospectra_massman

correction_factor_lpf.theor_cospectra_massman(zoL, nf, kf, a0_st, kf0_st, mu_st, a0_un, kf0_un, mu_un)[source]

Calculate reference cospectra using the Massman model.

This function implements the Massman (2004) model for scalar flux cospectra. The model uses different parameters for stable and unstable conditions to account for the effects of atmospheric stability on turbulent transport.

Parameters:
  • zoL (float) – Stability parameter (z-d)/L, where z is measurement height, d is displacement height, and L is Obukhov length [-]

  • nf (ndarray) – Natural frequency array [Hz]

  • kf (ndarray) – Normalized frequency array, f*(z-d)/U, where U is wind speed [-]

  • a0_st (float) – Amplitude parameter for stable conditions [-]

  • kf0_st (float) – Peak frequency parameter for stable conditions [-]

  • mu_st (float) – Shape parameter for stable conditions [-]

  • a0_un (float) – Amplitude parameter for unstable conditions [-]

  • kf0_un (float) – Peak frequency parameter for unstable conditions [-]

  • mu_un (float) – Shape parameter for unstable conditions [-]

Returns:

Normalized cospectrum values for each input frequency

Return type:

ndarray

Notes

The model follows Eq. 4.2 from Massman (2004) with the form: Co(f) = a0 * (kf/kf0) / (1 + (kf/kf0)^(2μ))^(7/6μ) / f

Different parameters are used for stable (zoL > 0) and unstable (zoL ≤ 0) conditions to better match observed cospectra.